skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zieger, B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Magnetic field fluctuations measured in the heliosheath by the Voyager spacecraft are often characterized as compressible, as indicated by a strong fluctuating component parallel to the mean magnetic field. However, the interpretation of the turbulence data faces the caveat that the standard Taylor’s hypothesis is invalid because the solar wind flow velocity in the heliosheath becomes subsonic and slower than the fast magnetosonic speed, given the contributions from hot pickup ions (PUIs) in the heliosheath. We attempt to overcome this caveat by introducing a 4D frequency-wavenumber spectral modeling of turbulence, which is essentially a decomposition of different wave modes following their respective dispersion relations. Isotropic Alfvén and fast mode turbulence are considered to represent the heliosheath fluctuations. We also include two dispersive fast wave modes derived from a three-fluid theory. We find that (1) magnetic fluctuations in the inner heliosheath are less compressible than previously thought, an isotropic turbulence spectral model with about 25% in compressible fluctuation power is consistent with the observed magnetic compressibility in the heliosheath; (2) the hot PUI component and the relatively cold solar wind ions induce two dispersive fast magnetosonic wave branches in the perpendicular propagation limit, PUI fast wave may account for the spectral bump near the proton gyrofrequency in the observable spectrum; (3) it is possible that the turbulence wavenumber spectrum is not Kolmogorov-like although the observed frequency spectrum has a −5/3 power-law index, depending on the partitioning of power among the various wave modes, and this partitioning may change with wavenumber. 
    more » « less
  2. Abstract We compare hybrid (kinetic proton, fluid electron) and particle-in-cell (kinetic proton, kinetic electron) simulations of the solar wind termination shock with parameters similar to those observed by Voyager 2 during its crossing. The steady-state results show excellent agreement between the downstream variations in the density, plasma velocity, and magnetic field. The quasi-perpendicular shock accelerates interstellar pickup ions to a maximum energy limited by the size of the computational domain, with somewhat higher fluxes and maximal energies observed in the particle-in-cell simulation, likely due to differences in the cross-shock electric field arising from electron kinetic-scale effects. The higher fluxes may help address recent discrepancies noted between observations and large-scale hybrid simulations. 
    more » « less